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Abstract 

We specify an analytically solvable age-structured harvesting model for collectively optimal and 

Markov-perfect Nash equilibria in both deterministic and stochastic settings. The model has any number 

of age-classes and is assumed to be harvested from one or two age classes. The collectively optimal 

harvests are obtained in closed form as functions of the number of individuals in the given age class. The 

existence of sustainable solutions is shown to depend on fundamental biological factors and rate of 

discount in addition to the internal delays in the age-structured system. In a symmetric game all actors 

harvest both age classes and the existence of sustainable Nash equilibrium depends on the objective 

functional properties besides the rate of discount. In an asymmetric game, the sustainability depends on 

how the number of actors are divided into groups harvesting population age classes in different locations. 

The collectively optimal and Nash equilibria are shown to be globally asymptotically stable for optimal 

feedback solutions. Stochastic recruitment makes harvesting more conservative in both the optimal 

solution and various Nash equilibria. 
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1 Introduction 

From its very beginning the economics of renewable biological resources has specified harvested 

populations as homogenous biomass (Gordon 1954) while the related biological research has developed 

a life history theory (Roff 1992). This theory describes individuals by their birth, growth, reproduction 

and death and is directly linked with quantitative genetics and natural selection. It assumes that natural 

selection operates via life history traits (age of maturation, number of offspring, energy allocation, etc) 

and maximizes some measure of fitness1. At the population level, the theory has led to age-, size and 

stage-structured models that have been estimated to numerous plant, mammal and fish species (Caswell 

2001). Resource economics has an open avenue to proceed from biomass harvesting toward describing 

the management of biological populations by advanced models with strong theoretical and empirical 

bases and numerous application possibilities. Our study aims to proceed solving one obstacle in this 

development by presenting a model with any number of age classes that allows to obtain closed form 

solutions. 

 Hannesson (1975), Clark (1976), Reed (1980) and Getz (1980) developed the first generation of 

economic models on age-structured systems but present somewhat restrictive pulse fishing or maximum 

sustainable yield solutions. A new generation of models include more realistic age-structured fishery 

models (Diekert et al. 2010b), size-structured forestry models (Assmuth et al. 2017) and age/sex-

structured models for mammals (Pekkarinen et al. 2014). With only few exceptions, these studies apply 

numerical optimization and analytical results, not to mention closed form solutions, are scarce or 

nonexistent. In addition to results for collectively optimal solutions this holds especially to game 

theoretical equilibria for which only numerical open loop solutions have been presented (Diekert et al. 

                                                           
1 Interestingly, the life history theory applies economic concepts such as investments, discounting, capital, effort, trade-offs 

and methods like optimal control and dynamic programming (Roff 1992, Samuelson 1977). 
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2010a). Thus, we contribute to this literature by presenting analytical and closed form solutions for both 

the optimal and game theoretical setting. 

 Closed form solutions for the biomass model have been developed within the Fish War literature. 

Levhari and Mirman (1980) show that assuming logarithmic utility and a specific growth function 

enables to solve optimal and Markov-perfect Nash equilibria. Fisher and Mirman (1992, 1996) extends 

the analysis to two species and Doyen et al. (2018) to any number of species. One feature of the model 

in these studies is that the population intrinsic growth rate is infinite implying that interior steady state 

always exist. This feature is relaxed in Antoniadou et al (2013) and Mitra and Sorger (2014) and the later 

authors show that in the Markov-perfect Nash equilibrium the population survives only if the rate of 

discount multiplied by the number of actors remains below the intrinsic growth rate. 

“Optimal” extinction is a much discussed and somewhat controversial issue in the economics of 

renewable resources and we recall that it is originally given as a warning of the possible consequences 

of sole ownership (Clark (1973, cf. Begon et al 2006, p. 459). Clearly, this question becomes much more 

actual in “tragedy of the commons” context but besides the contribution by Mitra and Sorger (2014) 

results for nonlinear models and finite number of actors have been lacking (cf. Clark 1990, p 155-). Our 

analysis shows explicitly how, in the age-structured model, the existence of optimal sustainable solutions 

depends on fundamental biological factors like the number of spawers produced by one spawner, i.e. the 

reproductive rate, and on the internal delays in the age-structured system. It turns out that in the age-

structured models the existence of optimal sustainable solutions is much more critical compared to the 

biomass model. In our game theoretical setups we obtain new results on this question showing how the 

existence depends on the objective function parameters beyond the rate of interest.  

 Our study is an extension of Quaas and Tahvonen (2018) where the model is analyzed assuming 

two age classes. In addition to extending the model to include any number of age classes we study a 

symmetrical game theoretical equilibrium where all actors harvest two age classes, derive new results 
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for the existence of sustainable solutions, show global asymptotic stability of steady states and extend 

the analysis to stochastic recruitment. We first present the model and assumptions on functional forms. 

We solve the collectively optimal solution in closed form applying dynamic programming and prove the 

existence and global asymptotic stability of sustainable solutions. Our first game theoretical setup 

assumes that all actors are perfectly similar and harvest either one or two age classes. We find conditions 

for the existence of sustainable equilibria and global steady state stability. Next, an asymmetric Markov-

perfect Nash equilibrium is solved given the group of actors harvesting the young age class is different 

from the group harvesting the old and that the groups may differ in their numbers and a utility function 

parameter. Finally, we show that stochastic recruitment makes harvesting more conservative in all the 

equilibria studied. With some exceptions, the proofs are given in the appendix. 

 

2 Model structure and assumptions 

Let 1 2 0 1stx ,s , ,...,m,t , ,...   denote the biomass in age class s  at the beginning of period t.  Assume 

1.m   Recruitment occurs after harvest and depends on population size and structure and is given by a 

continuous twice differentiable recruitment function f . The survivability of individuals of age class s  

to age class 1s   is 0 1s ,   where 1 1s ,...,m .   The age specific per period harvest is 

1 0 1sth ,s ,...,m, t , ,...   .The population development over time can now be specified as 

 1 1 1 1,t t mt t mtx f x ,...,x ,h ,...,h ,            (1) 

 1 1 1 1s ,t s st stx x h ,s ,...,m      ,         (2) 

0 1s s
ˆx x ,s ,...,n.              (3) 

Additionally, the variables must satisfy 

0 0 1 0 1st sth ,x , s ,...,m, t , ,...     .          (4) 
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The per periodic utility from harvesting depends on total age class specific harvest and is given by a 

continuous twice differentiable utility function U . Denoting the per period discount factor by 

 1 1/ r   , where r  is the rate of discount the problem is to  

 
 1

1 0 1
0st

t

t mt
h ,s ,...,m,t , ,...

t

max U h ,...,h 


 


 ,         (5) 

subject to (1)-(4). As such this specification is essentially similar with those in Reed (1980) and Getz 

(1980) which, however, restrict the analysis to maximum sustainable yield steady states. 

To obtain an analytically solvable specification assume that the population is harvested from two 

age classes k  and m , where 1 k m  . Parameters 0 kn  and 0 mn  denote the number of fishers 

harvesting age classes k  and m  respectively. Utility is obtained from the two age classes separately and 

are given as  

 
1 1

1

it
i it i i

h
U h n u , i k ,m





 
 


,         (6) 

where 0  , 0iu ,i k ,m   and 0 1ith ,i k ,m,t , ,...   denote the harvest of individual (similar) 

fisherman. When 1  , we write    i i it i i itn uU h n u ln h .  The population recruitment depends on the 

number of fish in age class m  (after harvesting) and is given as  

   
1

1
1

1mt m mt mt m mtf x n h x n h 


   
     

 
,      (7) 

where 0,   0 1   and 1.   Notice that when 1  , f  approaches the growth Cushing (1973) 

recruitment function  mt m mtx n h


   but we assume 1  , if not stated otherwise. This assumption 

implies that the slope of the recruitment function at the origin is bounded from above, and that recruitment 

remains bounded from above even if the spawning stock becomes very large – both consistent with 
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principles of recruitment biology. When 2  , equation (7) represents the Beverton and Holt (1957) 

formulation, i.e. 

 
 

 1

mt m mt

mt m mt

mt m mt

ˆ x n h
f x n h ,

ˆ x n h






 

 
 where  

11  and 1ˆ̂   
   .  

The assumptions that only the oldest age class reproduces and die after reproduction refers to 

semelparous species such as eel and Pacific salmon (Jennings et al 2001). Both of these migratory fish 

species are harvested from some young age class besides harvesting the oldest just before spawning. 

Using 1/ (1 )r    to denote the discount factor with discount rate 0r  , the collective 

optimization problem is 

 
 

1 1

0 00 1

1 1

1 1kt mt

tkt mt
k k m mth ,h ,t , ,...

h h
V max n u n u

 


 

 




  
  

  
x       (8) 

subject to   

 
1

1
1

1 1 1,t mt m mtx x n h ,


   



    
 

         (9) 

 1 1 0 1 1s ,t st k st stx x n h ,h for s k , s ,...,m ,               (10) 

0 0, 1,..., ,sx s m              (11) 

0 0 1 0 1it sth , i k ,m,x , s ,...,m, t , ,... .              (12) 

Notice that when only the oldest age class is harvested, the model coincides the Deriso (1980) delay 

difference fishery model. Another special case is obtained when only some age class 1 k m   is 

harvested. In Clark (1990, p. 197-) the steady state solutions for closely related setups are discussed. 

Assuming 1m  , we obtain a version of the standard biomass model for optimizing the escapement 

t tx h  (Clark 1990, p. 198-). 
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3 Collectively optimal feedback solution 

As in the fish war literature and as in Mitra and Sorger (2014), we set    in order to obtain analytical 

closed form solutions. We hypothesize that the value function has the form 

 
 1

1

1

1

m i

ii

x
V



 







 


x  

where 1s, ,s ,...,m    are unknown parameters. Thus, we attempt to solve the Bellman equation 

 

 

     

1

1

1 11 11 1
1

21 1
1

1

1

1 1 1 11 1

1 1 1 1 1k m

m i

ii

k m m mk k k ik m
ik k m m k i

h ,h i k

x

x n h x n h xh h
max u n u n .



   

 


    
    

    





   



 


 


                      

      
  





Maximization of the RHS leads to  1 0k k k k k k k ku n h n x n h
  


    and  1

1 1 0m m m m m mu n h n n h .
  
     

Postulating 
j j jh x , j k ,m  , where , ,i i k m   are constants implies 

 
 

1 11 0
1

k k
k k k k k k

k k

u
u n ,

n







     

  




  
      

  

      (13) 

 
 

1

1 1 1
1 0

1

m m
m m m m

m m

u
u n .

n


 




    

  


 


    


     (14) 

Postulating again 
j j jh x , j k ,m  , the Bellman equation reads 

     

     

1 11

1

1 111

1

21 1
1

1 1 1

1 1 1

1 1 11
0

1 1 1

m i k k m m

i k k m mi

m m m m i ikk k k k
ik
i k

x x x
u n u n

x n x xx n x
.

 

 

 
 

  

      
   

  

 



 




 

  
  

  
                     

    




 (15) 

Since (15) must hold with any positive 1ix ,i ,...,k , we obtain 

1

1 0 1 1i i , i ,...,k ,   

              (16) 
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 
11 1

1 1 0k k k k k k ku n n ,
     
 

             (17) 

1

1 0 1 1i i , i k ,...,m ,   

               (18) 

 
11 1

1 1 0m m m m m mu n n .
     
              (19) 

From (16) and (18) 

     1 1 1 11 1

1 1

k kk k

k k k,where
 

       
       ,        (20) 

     1 1 1 11 1

1 1

m k m kk m k m

m k k m m,where .
 

        
        

          (21) 

Apply (20) and (21) and write (17) and (19) as 

 
11 1

1 1 1 0k k k k k k ku n n ,
     
 

            (22) 

 
11 1

1 1 1 0k m m m m m mu n n .
      
 

            (23) 

Elimination of 1 1j , j ,k    from (22) and (23) by (13) and (14) leads to 

 1 1
0m k m m m

k k

u n
u ,

 
   




 


           (24) 

 1 1
0k m k k k

m m

u n
u

 
   




 


  ,        (25)  

which, given the assumptions 0 1 1 0 0 1 0 1 2, , , , ,k , m ,k m, m,k               , have the solution 

   

   

11
2 1 11

11
1

=
k m

k k

k k m k m k m

u

n u n u

  


 

    


   

 







        (26) 

   

   

11
2 1 11

1 1
1

=
k m

m m

k m k m k m m

u

n u n u

  


  

    


    

 







        (27) 

Proposition 1. Assuming  
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1
1 1m m    ,            (28) 

the steady state exists, is unique and  

  

1

1
1

1 1 1

1
 1 1m

k k m mx , n n


 


   

 




 

 
    

 
       (29) 

   1

11  0 for 1 2
s

s k k s kx n x , s k ,s ,...,m,  


             (30) 

Proof, Appendix A. 

 

Figure 1. Size of age class 1x  as a function of  and m k   and the optimal steady state. 

               Note: 2 8 0 9 0 99 2 4 1 5 1 2 2 3k m k m, , . , . ,k ,m , u . , u . ,n ,n                

 

     
 11 226 27

n / nm / n

k m

where given and .


   
 

  
  

 
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An example of the dependence of the steady on and k m   is shown in Figure 1. To interpret the 

existence condition (28) notice that 
1

1    is the derivative of the recruitment function (7) when the 

number of oldest fish net of harvest approaches zero. For the biomass model 1m   and we obtain the 

familiar condition 
1

1 1r     (cf. Clark 1990, p. 231). Multiplying 
1

1    by the survivability factor 

1m 
 yields the maximum reproductive rate, i.e. number of spawners produced by each spawner in the 

absence of density dependence in recruitment. According to Myers et al (1999) this is perhaps the most 

fundamental parameter in population biology and for fish species it typically varies between 1-7. The 

maximum reproductive rate must exceed one for the population to be biologically viable. Writing (28) 

as 

1

111 m m   , 

shows that the economically discounted maximum reproductive rate must be higher than one for the 

population be economically viable i.e. for the optimal sustainable harvesting solution to exist. The critical 

discount factor is higher (and interest rate lower), the lower are   and    and the higher are and , 

the number of maturation periods m.  For example assuming 6 0 9 0 8  =2 and 4, . , . , m       , the 

maximum reproductive rate equals 3.41 and the critical discount rate 36%. Decreasing the level of   to 

2 decreases maximum reproductive rate to 1.4 and the critical discount rate to 3.3%. 

Proposition 2. Given the existence of optimal positive steady state population level, the steady 

state is globally and asymptotically stable for the optimal feedback solutions. 

Proof, Appendix A.  

The proof utilizes the fact that the dynamic system (9)-(10) with feedback harvesting rules can 

be transformed to a linear difference equation system. Given condition (28), it then follows that the 

unique steady state of this system is globally stable for optimal feedback solutions. 
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Proposition 3. Given 
1

11m m       the optimal steady state satisfies the properties: 

a) 
 1

0 0 0for 1 0 for 1 0

m

ssk m s s

k k k k k

xh h x x
, , s ,...,k , s k ,...,m, ,

u u u u u


   

       
    


  

 1
0 0 0for 1 0 for 1 0

m

ssk m s s

m m m m m

xh h x x
, , s ,...,k , s k ,...,m, ,

u u u u u


   

       
    


 

b) 
 1

0for 1 0 for 1 0

m

sss s

k k k

xx x
s ,...,k , s k ,...,m, ,

n n n


 

     
  

  
0 0 0k kk m

k k k

n hh h
, , ,

n n n

 
  

  
 

   1
0 0 0 0for 1 0 for 1 0

m

ssm mm k s s

m m m m m m

xn hh h x x
, , , s ,...,k , s k ,...,m, ,

n n n n n n


   

        
     


 

c) 
   

Given it follows that 0 0 0 1k m s
k m

n n x
n n n, , , , s ,...,m

n n n

   
     

  
, 

d) 0 1 0 0 0s m m m k m m k

k k k k

x h u n h u n h
, s ,...,m, , high enough , low enough .

u n u n   

   
      

   
  

Proof, Appendix A.  

For comparison, recall that in the generic biomass harvesting model the only parameter 

influencing optimal steady state is the discount factor. Proposition 3 shows that here the optimal 

population steady state depends not only on discounting, but other properties of the objective function as 

well. Higher marginal value of fish from older age class increases their harvest level, decreases harvest 

from the young age class and increases total population size. Higher marginal value of young fish has 

opposite effects. The number of fishermen harvesting the old and young age classes have similar effects 

albeit in the case of equal number of fisherman harvesting both age classes their total number does not 



12 
 

have any effects. Higher discount factor implies higher population size and higher harvest from the old 

age class but the harvest from the young age class may increase or decrease. 

 

4 A symmetric Markov perfect-Nash equilibrium: all actors harvest both age classes 

Assume that all fisherman harvest both age classes and denote their total number as  k mn n n .   Thus, 

each fishermen aims to solve the problem 

 
 

1 1

0 00 1

1 1

1 1kt mt

tkt mt
k mth ,h ,t , ,...

h h
V max u u

 


 

 




  
  

  
x   

subject to   

 
1

1
1

1 1 1,t mt mt mtx x H h ,


   



     
 

   

 1 1 0 1 1s ,t st kt st kt stx x H h ,H h for s k , s ,...,m ,             

including (11) and (12) and where itH ,i k ,m  denote the harvest of all other (similar) fisherman. We 

will analyze only the Markov-perfect Nash equilibria, or Nash equilibria for short and apply Dockner et 

al (2000, p. 92- and Sorger 2015, 210-). The Bellman equation for each player is written as 

 

 

     

1

1

1 11 11 1
1

21 1
1

1

1

1 1 1 11 1

1 1 1 1 1k m

m i

ii

m m m mk k k ik m
ik m k i

h , h i k

x

x H h x H h xh h
max u u .



   

 


    
    

    





   



 


 


                        

      
  





Maximization of the RHS implies  1 0n

k k k k k ku h x h H ,   

        1

1 0m m m m mu h x H h .
 
      

Given i i ih x ,i k ,m   and  1i iH n h  , we obtain 
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 
1

1

k k
k

k

u
,

n








  



 


  

          (31) 

 
1 1 1

m m

m

u
.

n








  







          (32) 

Applying again i i ih x ,i k ,m   and  1i iH n h  , the Bellman equation reads as 

     

     

1 11

1

1 111

1

21 1
1

1 1 1

1 1 1

1 1 11
0

1 1 1

m i k k m m

i k mi

m m m i imk k k
ik
i k

x x x
u u

x n x xx n x
.

 

 

 
 

  

      
   

  

 



 




 

  
  

  
                     

    




  

Since this equation must hold with any positive 1sx ,s ,...,k ,  we obtain 

1

1 0 1 1i i ,i ,...,k ,   

             (33) 

 
11 1

1 1 0k k k k ku n
     
 

    ,       (34) 

1

1 0 1 1i i ,i k ,...,m ,   

              (35) 

 
11 1

1 1 0m m m mu n
     
     .       (36) 

From (34) and (35) 

  1 1 1

1 where 
k k

k k k,


    
             (37) 

  1 1 1

1  where 
m k k m

m k m m, .


     
    

          (38) 

Apply (37) and (38) and write (34) and (36) as 

 
11 1

1 1 1 0k k k k ku n ,
     
 

            (39) 
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 
11 1

1 1 1 0k m m m mu n .
      
 

            (40) 

Elimination of 1 1i ,i ,k    from (39) and (40) by (31) and (32) yields 

 
 

 
1

1

1
1 0m k m m

m k k k k k

u n
g , u n

 
   

    


 


     ,    (41) 

 
 

 
1

2

1
1 0

k m k k

m k m m m m

u n
g , u n .

 

   
    



 




          (42) 

When 1  , the pair k m,   cannot be solved explicitly from (41) and (42) but to proceed solve k mu / u  

from (41) and eliminate it from (42) and obtain  

 
   

  

1
1

11

1

1 1 1 1
0

1 1

k m m m

k m

m k

n n
y , .

n n







 
    

 



 
                   

   (43) 

Proposition 4. Assuming 
1

111 mn   , the solution for (41) and (42) exists and is unique. 

Proof: From  2 0m kg ,   or (42) we obtain 

 

     

1

1 11

k m / k / /

m k
k /k m / k m /m/ k / /

m m m m k

u
.

u n n u

   

     

  


      



 


    

     (44) 

Since 0k m/     and 0k   as 0m  , equation  2 0m kg ,    or (44) defines k  as an 

increasing function of m  that starts from the origin. Given 
1

111 mn   , equation  1 0k my ,    (or 

43) has the properties  1 0 0 0y ,  ,  1 0 0k ky , /     and   1

1 0 as k ky , n .     Additionally, 

 1 0k my ,    defines k  as a decreasing function of m .  Thus, a unique pair k m,   solving (43) and 

(42) exists and this pair must solve (41) as well.□  
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The existence of solution for (41) and (42) still leaves open the question whether the population 

survives, i.e. whether the steady state population level is strictly positive. The necessary and sufficient 

condition for the existence of steady states with 0 1sx , s ,...,m   is  

      1 11 1

2 1 1 0
/ m

k m k k m my , n n


      
            (45) 

(A8, Appendix A), where k mn n n   when all actors harvest both age classes. Given 
1

1 11 m    both 

equations   0 1 2i k my , ,i ,     define k  as decreasing functions of m  and any solution pair of 

 1 0k my ,    with the property 0 1sx , s ,...,m   must exist below the locus of  2 0k my , .    Observe 

that   0 1 2i k my , ,i ,     are symmetric functions of i ,i k ,m  . This structure enables us to analyze 

the existence of steady states with positive population levels. We call an equilibrium positive if it satisfies

0 1sx ,s ,...,m  . 

Proposition 5. Given 0ku   or 0mu  , the necessary and sufficient condition for positive Nash 

equilibrium steady states is  

 
1

1 11 1m mn .                (46) 

Proof, Appendix A.  

With one actor  1n  , equation (46) coincide (28) and when 1m  , it can be written in the form 

1
1 1nr    , i.e. it coincides the result obtained in Mitra and Sorger (2014) for the biomass model. 

Given our earlier example with 6, 0.9, 0.8, 2, 4m         the critical interest rate decreases 

from 36% to 5.6% when n  increases from 1 to 10. When 2   the decrease is from 3.3% to 0.34% 

showing the sensitivity of positive Nash equilibrium steady state on the number of actors. 
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Proposition 6. Given 1 0 0k m, u ,u    , the condition  

 
1

1 11 1m mn                 (47) 

is sufficient for the nonexistence of positive Nash equilibrium steady states.  

Proof, Appendix A. 

Proposition 7. Given 1 0 0k m, u ,u    , the condition  

 
1

1 11 1m mn                (48) 

is sufficient for the existence of a positive Nash equilibrium steady state. 

Proof, Appendix A. 

 Let us denote the level of   satisfying (47) as equality by 1  and the level of   satisfying (48) 

by 2 , respectively.  

Corollary 1: At the Nash equilibrium the pair k m,   is higher (lower) the higher is k mu / u . Higher 

value of k decreases k  and increases m  if 
1 1 0n     and vice versa. Given 1 2     the 

existence of positive Nash equilibrium steady state depends on k mu / u  and k. 

Proof, Appendix A. 

Propositions 5-7 are illustrated in Figure 2 where the upper solid line shows k  as a function of 

m  as defined by (43). This function coincides with the boundary of positive steady states (dashed line) 

when either 0 or 0k m    as proved in Proposition 5. This implies condition (46) as a necessary 

and sufficient condition for positive Nash feedback equilibrium steady states given only the young or 
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old age class is harvested. When both age classes are harvested condition (47) implies that no positive 

Nash feedback equilibrium exists (Proposition 6). When the locus of (43) exists entirely below the 

existence boundary of positive steady states (45), positive steady states always exists independently on 

,  and m ku u k . This outcome follows under condition (48). When both (47) and (48) are violated the 

pair m k,   satisfying (41 and (42) lies between the solid lines and then the existence of positive Nash 

equilibrium depends on ,  and m ku u k  as shown in Proposition 7. 

 

Figure 2. Illustration of Propositions 6,7 and 8.  

               Note: Upper solid line: Propositions 6 and 7,  Lower solid line: Proposition 8 

                         Dashed line: The boundary for positive steady states 

                        
4 0 93 0 95 4 2 1 15 0 743upper solid line
0.772 lower solid line

, . , . ,m ,n , . , .    

      


  

 

The role of discounting and number of players in Propositions (5)-(7) and Corollary 1 are 

illustrated in Figure 3. A combination of  and N r  above the dashed line is sufficient for the 

nonexistence of positive Nash equilibrium steady state. Accordingly, a combination existing below the 

solid line is sufficient for the positive steady state. The two dots are examples of critical number of 
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players/interest rate combinations and increasing either of these two parameters imply that no positive 

steady state exist. The number of players have strong effect on the existence of positive steady state. 

Given the parameters in Figure 4 and one actor the critical interest rate is 46%  while with one hundred 

actors the value is ca. 1% . 

 

 

Figure 3. Illustration of Propositions 5-8 and Corollary 2. 

               Note: 8 0 9 0 8 4 2, . , . ,m ,n        

               Solid line: Below the line positive steady states exist (equation 48) 

               Dashed line: Above the line no positive steady states exist (equation 47) 

               Circle: Critical interest rate when 20 2 1m kn , u , u    

               Open circle: Critical interest rate when 20 1 4m kn , u , u    

               Given N=1, the critical interest rate is 0.46. 
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Figure 4. Illustration of Proposition 8.  

               Note: Dotted line: Boundary for positive population levels 

                         Solid line: Nash equilibrium, Dashed line: Optimal steady state 

                         4 0 93 0 95 4 2 1 15 0 8 1m k, . , . ,m ,n , . , . ,u u .              

 

 With zero rate of interest the conditions (46-48) reduce to the condition of population biological 

viability 
1

1 11 m   , i.e. number of actors has a role on population survivability only when interest rate 

is positive. In spite of this the equilibrium steady state depends on the number of actors even with zero 

rate of interest. Given 1   , the system (41) and (42) has the solution 

 

 

 

   

1 1
,

1 1

k m

k m

k k m m k m

u u

nu u u nu u u

 
 

   

 
 

     
, 
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implying that  and k mn n   increase in the number of actors and that the Nash equilibrium population 

level is lower the higher is the number of actors. 

We next compare the Nash and collectively optimal outcomes. For this purpose let  and ko mo   

refer to collectively optimal outcome and  and kn mn   to the Nash equilibrium respectively. 

Proposition 8. Given 1,   k mn n n  , it follows that io in ,i k ,m.    

Proof, Appendix A. 

Thus, we obtained the expected result that in the Nash equilibrium harvesting is less conservative 

compared to the collective equilibrium. Proposition 8 is illustrated in Figure 4.  

Corollary 2: When the positive Nash equilibrium exists, it is globally asymptotically stable. 

Proof: The global asymptotical stability follows from the proof of Proposition 2.  

 

5. Asymmetric Markov-perfect Nash equilibrium: two separate groups of harvesters 

Given separate groups of actors harvesting age classes k  and m   1 k m   the Bellman equations are 

written as 

 

 

     

1

10 11

1 11 11
1

210 11 1 1 1
1

1

1

1 1 1 11

1 1 1 1k

m i

ii

m m m mk k k ik
ik ,k i

h i k

x

x n h x H h xh
max u ,



  

 


    
    

   





  



 


 


                     

     
  




(49) 

and 
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 

 

     

1

20 21

1 11 11
1

220 21 2 1 2
1

1

1

1 1 1 11

1 1 1 1m

m i

ii

m m m mk k k im
im k i

h i k

x

x H h x n h xh
max u ,



  

 


    
    

   





  



 


 


                     

     
  




(50) 

respectively. By maximizing the RHS of both equations and applying  1i i i i i iH n h ,h x ,i k ,m     

we obtain 

 
1 1

1

k k
,k

k k

u
,

n








  



 


  

          (51) 

 
21 1 1

m m

m m

u
.

n








  







          (52) 

Applying again i i ih x ,i k ,m   the Bellman equation for harvesters of age class k reads as 
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                     
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Proceeding as before and after eliminating 1 2 1i ,i ,...,k ,k ,...,m    leads to the conditions 

 
11 1

11 1 1 1 0k k k ,k k ku n ,
      
 

            (53) 

 
11

1 1 11 1 0,k m m mn .
     


             (54) 

The Bellman equation for the harvesters of age class m is given as 
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implying after eliminating 2 2 2i ,i ,...,k ,k ,...,m    the conditions 

 
11

21 2 1 1 0k ,k k kn ,
    


            (55) 

 
11 1

2 1 21 1 0,k m m m m mu n .
       
 

            (56) 
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Elimination of 
1 1 1 2i i ,k, ,i ,     from (53)-(56) leads to 

   
 

1

1 1
0

1 1

i i j j

i

i i

n n
q ,i k ,m, j k ,m, i j,

n


 





 
     

 
      (57) 

  1 11 m m .
  
             (58) 

Elimination of   from (57) and (58) implies that any i ,i k ,m   solution satisfies 

1

m
k

k m m m

.
n n




 


 
          (59) 

Proposition 9. Given 
1

1 1 1m    , a unique solution 10 i in ,i k ,m     for (57)-(59) exists. 

Proof, Appendix A. 

To develop conditions implying a positive steady state with 0 1sx ,s ,...,m   we study solutions 

satisfying (57)-(59) and the boundary condition for positive steady states (cf. 45) 

     1 11 11 1
/ m

k mn n


    
    .        (60) 

Applying (59) and (60) enables to obtain 

 
1

1

2

2

2

m m

i j i

i

i

n n n
,i m,k , j m,k , i j,

n

    




    
           (61) 

   
1 1

2 1 1
2

4 m

k m k mn n n n          .       (62) 

Additionally, the solution must satisfy (57), (58), which when specified for 0kq  , can be written as 

          
11 1 1

1 1 1
mm

m m k k k k kn n n .
  

      
             (63) 
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Proposition 10. Given k mn n n  , a positive Nash equilibrium steady state satisfying (57), (58) exists 

iff 

 
1

1 11 1m mn .               (64) 

The discount factor that solves (64) as an equality is higher than the corresponding discount factor in 

the condition (28) for the socially optimal solution. 

Proof, Appendix A. 

According to (64) the number of actors affects the steady state existence only if the discount factor is 

below one. However, the number of actors has an effect on the steady state independently on discounting. 

To reveal this assume 1   and apply (57) and (58) to obtain 

1 1
,

(1 ) (1 )
k m

k k m mn n n n
 

 
 

   
,  

where    if 1.   Additionally, both  and k k m mn n   increase in number of actors implying that the 

equilibrium steady state population level decrease with number of actors.  

Proposition 11. Given 2  , a positive Nash equilibrium steady state satisfying (57), (58) exists iff  

   
2

4 2 1

22

m

k m k m k m mm

k mk m

n n n n n n n
.

n nn n

  


 


   

        (65) 

The lowest discount factor satisfying (65) as an equality is higher than the corresponding discount factor 

in the case of the socially optimal condition (28). 

Proof: The existence claims follow by analogous steps as in the proof of Proposition 10. The discount 

factor comparison holds true if  
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 
   
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1 1
4 2 1

0
22

m

k m k m mk m m

k mk m

n n n n n n n
g .

n nn n

  
  

 

 
   

     

We obtain 0g   when 
1 11 m   ,    0 0 0g ,g     implying   0g    when 

1 11 m   .   

Equation (65) does not immediately reveal how the number of actors influence the existence of positive 

steady state but it can be shown that the RHS approaches one from above given the population is 

biologically viable and either kn  or mn  approaches infinity. Thus, for any 1  , some finite number of 

actors always implies that the nonexistence of a sustainable equilibrium. Accordingly, without 

discounting the LHS of (65) equals one implying that the steady state population level remains positive 

given the population is biologically viable and number of actors is finite. However, we have already 

observed that without discounting the steady state population level decreases with number of actors. To 

further clarify how the number of actors affect the steady state in the absence of discounting assume 

1, 2, and k mn n n     . Equations (57) imply k m   and  

   
3

1 1 0n n        ,        (66) 

where .k m     When n  , it holds that 0  for (66) to hold and the value of n  that solves 

(66) approaches 1  . This implies that in (29) 



   and 0, 1,..., .sx s n   Thus, with no 

discounting, the equilibrium population level remains positive but converges toward zero when the 

number of actors increase without limit. We conjecture that this holds with any 1, and when .k mn n  

A numerical example is shown in Figure 5 where .k mn n  
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Figure 5. Equilibrium steady state population with and without discounting 

                Note: 8, 0.9, 0.8, 2, 2, 10km n         . 

 

Proposition 12. Given 2   and any choice of 0 0 1 0 1 2, , , m         the discount factor 

satisfying  

   
2

4 2 1

22

m

k m k m k m mm

k mk m

n n n n n n n

n nn n

  


 


   

       (67) 

is highest when m kn n .  
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Proof: Write 1k mn n .   This implies that the RHS of (66) becomes a concave function of mn  which 

obtains its minimum value when 1
2m kn n .    

Proposition 13. In Nash equilibrium at least  or k m   is higher than in the collectively optimal solution 

satisfying satisfying (24), (25). 

Proof, Appendix A. 

 
 

Figure 6. Illustration of Proposition 13 

               Solid lines: Nash equilibrium 

               Dashed line: The optimal equilibrium boundary 

               Dotted line: The boundary for positive steady states 

              Note: 4 0 6 0 8 4 1 2 0 95k m, . , . ,m ,n n , , . .             
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 Proposition 13 is demonstrated in Figure 6, where .k mn n  The Nash equilibrium is independent 

on parameters  and k mu u  while the optimal pair of ,k m   may exist anywhere on the dotted line. Thus, 

it is possible that the harvesting of either the young or old age class is more conservative in the Nash 

equilibrium compared to the optimal outcome. This implies that in contrast to the equilibrium where all 

actors harvest both age classes it is not possible to rule out an outcome where the Nash equilibrium steady 

state population is larger compared to the optimal steady state population. This is possible if /k mu u  is 

large implying by proposition 3a that the optimal total population steady state level is low while the Nash 

equilibrium steady state is independent on these parameters. 

6 Stochastic recruitment 

We assume that recruitment is stochastic and that 1t   follows an iid random process with positive 

support. The expected value of 1t   equals the value of α in the deterministic setting, i.e. 1t  
    , 

to make the deterministic and stochastic models comparable. We guess that the value function has the 

same form as in the deterministic case. Thus, we attempt to solve the Bellman equation  

 

 

     
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      
  




 

Maximization on the right-hand side leads to  

 1

1 = 0,k k k k k k k ku n h n x n h
  
 

   

 1

1 = 0.m m m m m m mu n h n x n h
   
      

Postulating =j j jh x , = ,j k m , and following the same steps in the deterministic case, we obtain 
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For 1  , harvest rates equl their deterministic values. For > 1 ,   
11 1> ,
   
      by 

Jensen’s inequality, as 1    is a convex function of  . As both k and m  decrease in 1     , 

uncertainty makes optimal harvesting more conservative. 

The solutions for the Nash equilibria are very similar as in the stochastic case. The only difference 

is that (41) and (42) are replaced by 
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Condition (58) remains very similar, except that we now have  

 1 (1 )( 1)= .m m          

In both Nash equilibria stochastic recruitment makes harvesting more conservative similarly as in the 

optimal solution. 

6 Conclusions 

Our aim has been to present analytical and closed form solutions for harvesting age-structured 

populations in both optimal and game theoretical settings. Developing economic models on management 

and harvesting of biological populations to include population internal structure allows to utilize the 
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latest development in population biology and the detailed data available. From the management point of 

view this development is necessary since according the present knowledge fishing causes age truncation 

effects which alter population future growth and life history traits. A warning example is the collapse of 

Atlantic cod stock off Labrador and Newfoundland that belongs to the worst collapses in the history of 

fisheries and which has been explained to be a course of uncontrolled fishing-induced age and size 

truncation effects (Olson et al 2004).  

Presently, optimization models including population internal structure are analyzed by numerical 

methods with only handful of exceptions (e.g. Tahvonen 2009). Analytical results make the deductive 

links between the model assumptions and consequences transparent and are still considered necessary 

for an economic model to be accepted as a theoretically genuine construction (Lehtinen and Kuorikoski 

2007). Analytical and closed form solutions for optimal harvesting models have been developed within 

the Fish War literature that has this far rest on biomass models for one or several species. Thus, in 

addition to strengthening the theoretical basis of the existing age-structured fishery models our study 

offers an extension for the Fish War literature. 

 We have solved optimal and Markov-perfect Nash equilibria for a specific age-structured model 

analytically and for several cases in closed form. Similar earlier analysis has not been presented in 

resource economics. Among other results, we showed that the comparative statics of the steady states of 

these equilibria differ from the corresponding biomass model. In the symmetric Nash equilibrium where 

all actors harvest two age classes the harvests are less conservative compared to optimal solutions while 

in the asymmetric Nash equilibrium with two groups of actors the reverse is possible.  

Since Clark (1973) one important and much discussed question has been the existence of optimal 

sustainable solutions or “optimal extinction”. Most commonly, this has been studied in the sole owner 

context while a game theoretical many player setup is clearly more relevant. We have presented a set of 
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new results showing how the sustainability depends critically on specific biological factors, number of 

harvesters and properties of the objective functional beyond the rate of discount. The interplay of the 

delays in the age-structured system together with the number of actors makes the existence of optimal 

sustainable solutions more vulnerable that suggested by the biomass models.  

Appendix.  

Proof of Proposition 1 

We study the steady state of the system 

 
1

1
11

1 1 1 1,t mt m mx x n ,
    



    
 

        (A1) 

 1 1 1 0 1 1s ,t st k s sx x n , for s k , s ,...,m ,                (A2) 

Given 1  , this can be transformed to a linear difference equation for 1 1stx ,s ,...,m.   Denote 

1 1st stx ,s ,...,m.     Thus,  

   
11 1

1 1 1 1,t m m mtn ,
     
 

             (A3) 

 
11

1 1 1  where 0 1 1s ,t k k st kn , for s k , s ,...,m .
  


            (A4) 

Let 1s ,s ,...,m   denote the steady state. Solving (A4) recursively yields 

    
11 1

11
m

m k kn ,


 
 

      

which enables us to solve 1  from (A3): 
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  
 

    
,   (A5) 
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which after simplification yields (29). Given no harvesting and 0k m   , (A5) implies 

 1

1 1

1m

m m



  

 

  



 


 


, 

i.e. without harvesting the population is viable iff 
1 0m m       , or equivalently  

1
1 11 m .               (A6) 

Under harvesting the existence of strictly positive steady state requires that the denominator of (A5) is 

strictly positive and 1 0 1 0k k m mn , n     . The denominator of (A5) is zero iff 1k k/ n   or 

   
11 11 11 1

/ m

k k m mn n .


    
            (A7) 

By (A6) and (A7), 0k   when 0m  , 0k   when 1m m/ n   and 1 0   when 0k m    

implying that (A7) defines k  as a decreasing concave function of m .  Since, 
 1 1

1

/
x


  , we obtain a 

necessary and sufficient condition for 1 0x   as  

     1 11 11 1
/ m

k k m mn n


    
            (A8) 

After elimination of  and k m   by (26) and (27) we obtain (28). The population steady state, 

2sx ,s ,...,m  in (30), follows from (10).□ 

 

Proof of Proposition 2. 

In matrix notation the linearly transformed system (A1), (A2) is written as 1t t ,  Χ GΧ Χ  

where  1 2t t t mt, ,...,   Χ ,  1 2 m, ,...,   Χ  and  
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 
11

1

1

1

2

1

1

0 0 0 1

0 0 0

0 0 0

0 0 0 0

0 0 0

m m

m

n








  

 

 

 











 
 
 
 
 

  
 
 
 
 
  

G ,     (A9) 

given that 1 1 1s k kn , s ,...m      for s k ,  1 1k m    and 1s   for s k.   

Computing the Jacobian matrix for 2 3m , ,...  shows that the characteristic equation for (A9) can be 

written as  

      1 1 1 11 1 1 0
mm

m m k kn n .
       
             (A10) 

Given the existence of positive steady state (condition (45)), the moduli of roots   in (A10) are strictly 

below one implying that the steady state is globally asymptotically stable for optimal feedback 

solutions.□ 

Appendix C. Proof of proposition 3. 

a) From (26), (27) and (29) we obtain 0 0k k m k/ u , / u       , 0 0k m m m/ u , / u      

1and 0kx / u   . The remaining claims follow from (30). b) From (26), (27) and (29) we obtain 

 0 0 0k k k k k m k/ n , n / n , / n           ,  0 0 0m m m m m k m/ n , n / n , / n          

1 and 0kx / n .    The remaining claims then follow from (30). c) From (29) 0/     and 

1 0x /     and by (26), (27) 0s / , s k ,s      implying that 0 1sx / ,s ,...,m.     Finally, the 

effects of   on  and k mh h  follow by (28). □ 

Proof of Proposition 5. 
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Assume 0ku   and set 0k   in  1 0k my ,    and write 

 
    1 11

1

1
0 1 0

m m

m

m m m

n
y , n

   
  



   
     .     (A11) 

Eliminating m  from (A11) by  2 0 0my ,   and solving (A11) for   produces 

   

1
1 1

1 11 1
m

m mn n / n / n .


   



 
 

   
 

        (A12) 

Since 

 2 0 0

0

m

m

y ,










 and 2 0

m

y







, the level of   must be higher than the RHS of (A12) which is 

equivalent to condition (46). The symmetry of (43) and (45) implies that the argument for the case 0mu   

is exactly analogous.□ 

Proof of Proposition 6. 

By Proposition 5    1 2 0k m k my , y ,      given  
1

111 1m mn        and either 0k   or 

0m  . After elimination k  from  1 k my ,   by  2 0k my ,   , the equation  1 0k my ,    becomes 

a function of m , say  my  . It holds that    0 0 0 0y , y   and   0my    implying by 

1 0ky /     that the solution pair of  1 0k my ,    exists above the solution pair of  2 0k my ,    

when 0 0m k, .    Decreasing the level of   implies (47) and shifts the solution locus of 

 1 0k my ,    upwards implying that no steady states exist.□ 

Proof of Proposition 7. 



34 
 

Positive steady states exist if the locus of  1 0m ky ,    is below the locus of  2 0m ky ,   . By the 

symmetry, in the borderline case both equations are satisfied only at one single point where m k .   

Equation  2 0m ky ,    yields two solutions for such a point, i.e. 

 
1 1

2 1 21
m

k
n n


 







  .          (A13) 

Elimination of m  and k  from  1 0m ky ,    by m k   and the lower root in (A13) enables to obtain 

a nonnegative solution for  , which can be given as (48) when taken as an equality. After elimination 

of k  by  2 0k my ,    from  1 m ky ,   we obtain a function of m  and its value is strictly negative 

excluding the lower root of (A13). Since 1 0ky /    , the locus of  1 0m ky ,    cannot exceed the 

locus of  2 0m ky , .    Increasing   shifts the locus of  2 0m ky ,    downwards. By the fact that 

the LHS of (A13) is decreasing in   implies that (48) is sufficient to 0 1sx ,s ,...,m   at the Nash 

equilibrium steady state.□ 

 

Proof of Corollary 1. 

The Nash equilibrium pair  and m k   solve (42) and (43). Equation (43) defines k  as a decreasing 

function of m  (Proof of Proposition 4) that is independent of  and k mu ,u k. Equation (42) determines 

k  as shown in (44) and we obtain 0k k/ u    and          1kSign / k Sign ln n ln        

 1 1Sign .    This directly determines the dependence of  and k m   on  and k mu / u k. When 

1 2p   , Propositions 5 and 7 imply that the solution lines for  1 0m ky ,    and  2 0m ky ,    
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cross. This implies that the existence of the Nash equilibrium with 0 1sx ,s ,...,m   becomes 

dependent on k mu / u  and k. □ 

Proof of Proposition 8 

Write conditions (41) and (42) as  

 

 
 

 
1

1

1
1 0m k m m

k m k k k k

u n
g , , u n

 
   

      


 


     ,   (A14) 

 
 

 2

1
1 0

k m k k

k m m m m m

u n
g , , u n ,




   

      





           (A15) 

where 0 1  . When 0  , these equations coincide equations (24) and (25), i.e. define the 

collectively optimal outcome. Assume 0   and solve from (A14) and (A15) 

 

1

1

1

/ k
mo

m k

ko

mo

u

u
,

n


  

 





  
 
 


          (A16) 

 

   

1

1 1

mo k m

ko

m mo k m

u
.

u n u



 

 


  





         (A17) 

Equation (A16) defines ko  as an increasing strictly convex function of mo  and (A17) an increasing 

and strictly concave function respectively. Both functions imply that 0ko   when 0mo .   At the 

origin the slope of (A17) exceeds the slope of (A16) implying the existence of a unique ko mo,   

solving (A14), (A15). From (A14) 1 10 0kg / , g /        implying 0kd / d   , i.e. in the m k,   

plane increases of   shifts the locus of  1 0k mg , ,     downwards. From (A15) 
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2 20 0kg / , g /        implying 0kd / d   , i.e. in the m k,   plane increases of   shifts the 

locus of  2 0k mg , ,     upwards. This implies io in ,i k ,m.   □ 

Proof of Proposition 9. 

By (59) 0k   when 0m   and k  is an increasing function of m .  By (57)  0 0 0mq ,   if 1 0 

. By (58) 1 0   is equivalent to   1 11 0
mm   

     which holds by 
1

1 1 1m .     Additionally, 

 0 0m kq ,   when  
1

1 1 11k k kn n      . By 1 0  ,  0 0m mq ,   holds with some finite level 

of 10 m m
ˆ n    since  0 0 0mq ,   and      

1
0 1 1m m m m m m mq , n n


   


       is an increasing 

function of m  and  10 0m mq ,n .   Because 0mq   defines k  as a monotonically decreasing function 

of m  in the domain 0 m m
ˆ    the solution exists and is unique.□ 

Proof of Proposition 10. 

When written as an equality (64) follows directly from (61)-(63). The inequality sign follows by (45) and 

since the LHS of (60) decreases in k  and because   0m

kq /      and 0k kq /     in (57). When 

m 
 is increased from the level that satisfies (64) as an equality, the level of k  or m  must increase in 

order to (63) to be satisfied. This, implies that in (60) the RHS exceeds the LHS implying by (45) that 

the steady state with 0 1sx ,s ,...,m   does not exist.  

The discount factor comparison holds true if  

  
1 11

2 1 12 11
1 0

m
mn .

n

    


            (A18) 
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The sign of the LHS of (A18) equals the   
1

2 1 2
m

sign     . Condition (28) implies 
1

1 11 m .    

Since the term  
1

2 1 2
m

     is decreasing in   and zero when 
1

1 11 m   , it follows that the sign 

in (A18) holds and the level of discount factor satisfying (64) as an equality must be higher than the 

corresponding discount factor in the case of the socially optimal solution.□ 

Proof of Proposition 13. 

After eliminating m ku / u  equations (24), (25) imply 

   1 1 0k k m mn n ,
 

              (A19) 

where   is given by (58). The Nash equilibrium must solve (57) and (58) specified for i k  and this 

condition can be written as 

   
   

1 1
0

1 1 1

k k m m

m m k k

n n
.

n n

 
 

 

 
  

    
        (A20) 

Given 0 0k m,    it follows that    0 1 1 1 1m m k kn n        . Since    1 1k k m mn n     is 

increasing in k  and m , the locus of (A19) must exist below the locus of (A20) when 0 0k m,   . 

This rules out the case where both  and m k   are lower in the Nash equilibrium compared to the 

collectively optimal solution.  

  



38 
 

References 

Assmuth, A., Ramo, J. and Tahvonen, O. (2017) Economics of size-structured forestry with carbon 

storage. Canadian Journal of Forest Research 48, 11-22. 

Begon, M., Townsend, C.R. and Harper, J.L. 2006. Ecology: from individuals to ecosystems. Blackwell 

publishing, fourth edition, Malden, MA, USA. 

R.J.H. Beverton, S.J. Holt, 1957. On the dynamics of exploited fish populations, Fish Invest. Ser. II, Mar. 

Fish G.B. Minist. Agric. Fish. Food 19. 

Caswell, H. 2001. Matrix population models. Massachusetts: Sinauer 

Clark, C.W., 1973. The economics of overexploitation. Science 181, 630-634. 

Clark, C.W., 1990. Mathematical bioeconomics: the optimal management of renewable resources. 

Second edition, John Wiley & Sons, Inc., New York. 

Cushing, D.H. 1973. Dependence of recruitment on parent stock. Journal of the Fisheries Research 

Board of Canada, 30(12), 1965-1976. 

Deriso, R.B., 1980. Harvesting strategies and parameter estimation for an age-structured model. 

Canadian Journal of Fisheries and Aquatic Sciences 37: 268-282. 

Diekert, F., Hjermann, D., Nævdal, E., Stenseth, N., 2010a. Non-cooperative exploitation of multi-cohort 

Fisheries: the role of gear selectivity in the North-East Arctic cod fishery. Resource and Energy 

Economics 32(1), 78-92. 

Diekert, F., Hjermann, D., Nævdal, E., Stenseth, N., 2010b. Spare the young fish: Optimal harvesting 

policies for North-East Arctic cod. Environmental and Resource Economics 47(4), 455-475. 

Dockner, E., Jørgensen, S. Van Long, N. and Sorger, G., 2000. Differential games in economics and 

management science. Cambridge University Press, Cambridge, UK. 

Doyen, L., Cissé, A. A., Sanz, N., Blanchard, F., Pereau, J.-C., Mar, J.-C., 2018. The tragedy of open 

ecosystems. Dynamic Games and Applications 8 (1), 117-140. 

Fischer, R. D., Mirman, L. J., (1992). Strategic dynamic interaction: Fish wars. Journal of Economic 

Dynamics and Control 16 (2), 267-287. 

Fischer, R. D., Mirman, L. J., 1996. The compleat fish wars: Biological and dynamic interactions. Journal 

of Environmental Economics and Management 30 (1), 34-42. 

Getz, W. 1980. The ultimate-sustainable-yield problem in nonlinear age-structured populations. 

Mathematical Biosciences 48, 279-292. 



39 
 

Gordon, H.S. 1954. The economic theory of a common property resource: the fishery. Journal of Political 

Economy 80, 124-142. 

Hannesson, R. (1975) Fishery dynamics: A North Atlantic cod fishery. Canadian Journal of Economics 

8 (2), 151-173. 

Jennings, S. Kaiser, M.J. and Reynolds, J.D. 2001. Marine fisheries ecology. Blackwell Science Ltd, 

Malden, MA, USA. 

Hilborn, R. and Walters, C.J. 2001. Quantitative Fisheries Stock Assessment: Choice Dynamics and 

Uncertainty, Chapman & Hall, London. 

Kapaun, U., Quaas, M. F., 2013. Does the optimal size of a fish stock increase with environmental 

uncertainties? Environmental and Resource Economics 54 (2), 293-310. 

Lehtinen, A and Kuorikoski, J,. 2007. Computing the perfect model: why do economists shun simulation. 

Philosophy of Science 74(3), 304-329. 

Levhari, D., Mirman, L. J., 1980. The great fish war: An example using a dynamic Cournot-Nash 

solution. The Bell Journal of Economics 11(1), 322-334. 

Mitra, T., Sorger, G., 2014. Extinction in common property resource models: an analytically tractable 

example. Economic Theory 57(1), 41-57. 

Myers, R.A., Bowen, K.G. and Barrowman, N.J. (1999) Maximum reproductive rate of fish at low 

population sizes. Canadian Journal of Fish. Aquat. Sci. 56: 2404-2419. 

Pekkarinen, A-J., Kumpula, J. and Tahvonen, O. 2015. Reindeer management and winter pastures in the 

presence of suplementary feeding and government subsidies. Ecological Modelling, 312: 256-271. 

Olsen, E.M, Heino, M, Lilly, G.R, Morgan, MJ, Brattey, J, Ernande B. and Dieckmann, U. 2004. 

Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–

935 

Quaas, M. F., Requate, T., Ruckes, K., Skonhoft, A., Vestergaard, N., Voss, R., 2013. Incentives for 

optimal management of age-structured fish populations. Resource and Energy Economics 35 (2), 113-

134. 

Quaas, M. F. and Tahvonen, O. (2018) Strategic harvesting of age-structured populations, manuscript, 

Department of Economics, Leipzig University, Germany. 

Reed, W.J. 1980. Optimum age-specific harvesting in a nonlinear population model. Biometrics 36, 579-

593.  



40 
 

Roff, D.A. (1992) The evolution of life histories: theory and analysis. Chapman and Hall, New York. 

Samuelson, P. (1977). Generalizing Fisher’s “reproduction value”: linear differential and difference 

equations of “dilute” biological systems. Proceedings of the National Academy of Sciences of the United 

States of America, 74, 5189–5192. 

Tahvonen, O., 2009. Economics of harvesting age-structured fish populations. Journal of Environmental 

Economics and Management 58(3), 281-299. 

Sorger, G. 2015. Dynamic economic analysis: deterministic models in discrete time. Cambridge 

University Press, Cambridge, UK. 

Tahvonen, O., 2014. Optimal harvesting of size-structured biological populations. In: E. Moser et al. 

(Ed.), Dynamic Optimization in Environmental Economics. Springer, Berlin Heidelberg. 

Tahvonen, O., 2015. Economics of naturally regenerating, heterogeneous forests. Journal of the 

Association of Environmental and Resource Economists 2(2), 309-337. 

Wilen, J. E. (1985). Bioeconomics of renewable resource use. In A. V. Kneese & J. L. Sweeney (Eds.), 

Handbook of natural resource and energy economics (Vol. I, pp. 61–124), Amsterdam: Elsevier. 

 


